X
تبلیغات
علوم آزمایشگاهی دانشگاه علوم پزشکی تهران - زیست سلولی و ملکولی
laboratory Science of Tehran University of Medical Science

دید کلی

هر یاخته یوکاریوتی دارای گروهی از اندامکهای سیتوپلاسمی به نام لیزوزومهاست که عمل اصلی آنها گوارش درون یاخته‌ای و برون یاخته‌ای است. لیزوزومها کیسه‌های محتوی آنزیمهای هیدرولاز اسیدی یک غشایی هستند. غشای لیزوزوم شبیه غشای پلاسمایی است ولی مقدار لیستین آن زیادتر و ضخیم‌تر از غشای میتوکندری است و قابلیت تلفیق با غشاهای دیگر از جمله وزیکولهای آندوسیتوزی را دارد که علت آن زیاد بودن لیپیدهای غشایی است.

لیزوزومها در
سلولهای گیاهی ، جانوری و تک سلولیها وجود دارند. باکتریها لیزوزوم ندارند. لیزوزومها را در حکم کیسه‌های خودکشی و یا نارنجک درون سلولی می‌نامند که تخریب غشای آن می‌تواند موجب تجزیه مواد و اجزای درون سلول و در نتیجه لیزوزومها از غشا و ماده زمینه حاوی آنزیمهای مختلف تشکیل شده است.

آنزیمهای لیزوزومی

آنزیمهای لیزوزومی عمل هیدرولازی دارند و ساختمان گلیکوپروتئینی دارند. این آنزیمها در PH اسیدی فعالند و PH مناسب عمل آنها حدود 5 - 4.5 است. در لیزوزوم انواع مختلفی از آنزیمهای هیدرولازی وجود دارند که تعدادی از آنها عبارتند از :


  • آنزیمهای هیدرولیز کننده پروتئین‌ها شامل پروتئاز و پپتیدازها. مثالهای این دسته از آنزیم‌ها عبارتند از کاتپسین ، کربوکسی پپتیداز A ، B ، C و گلوتامات کربوکسیلاز

تصویر
*آنزیمهای هیدرولیز کننده لیپیدها مانند استرازها ، فسفولیپازها.


  • گلوسیدازها که بر روی مواد قندی اثر می‌گذارند مثل آنزیم آلفا 1 و 4- گلوکوزیداز ، بتا گلوکورونیداز ، آریل سولفاتاز A ، B بتا گالاکتورونیداز و آلفا مانوزیداز
  • آنزیمهای هیدرولیزکننده اسیدهای نوکلئیک مانند DNase ، RNase

  • فسفاتازها مثل اسید فسفاتاز ، فسفودی استراز ، فسفاتیدیک اسید فسفاتاز.

سنتز آنزیمهای لیزوزومی

سنتز آنزیمهای لیزوزومی با دخالت ریبوزومهای متصل به شبکه آندوپلاسمی و فرضیه پپتید نشانه است. گلیکوزیلاسیون این آنزیمها ضمن سنتز آنها در فضاهای شبکه آندوپلاسمی دانه‌دار انجام می‌شود و پردازش آنها نهایتا پس از انتقال به دستگاه گلژی صورت می‌گیرد. آنزیمهای لیزوزومی دارای مانوز 6 - فسفات است که به عنوان نوعی نشانه برای انتقال آنها از شبکه آندوپلاسمی به دیکتیوزومها و سپس به لیزوزوم‌های اولیه است. مانوز 6-فسفات نشانگر یا علامت پروتئینهای لیزوزومی است.

ساختار غشای لیزوزوم

مطالعات نشان می‌دهد که گلیوکوپروتئین به مقدار زیاد در این غشاها وجود دارد. این پروتئین‌ها به شدت گلیکوزیله شده‌اند و بطور قابل توجهی در مقابل تجزیه توسط هیدرولازهای اسیدی ماتریکسی لیزوزوم مقاومند و لیزوزوها را به صورت یک مجموعه بسته نگه می‌دارد. غشای لیزوزوم قابلیت تلفیق با سایر غشاها را دارد و از مقدار زیادی لیستین تشکیل شده است. غشای لیزوزوم بوسیله آنزیمهای درون آن تا حدی گوارش می‌یابد. اما بطور دائم ترمیم می‌شود، این عمل نیاز به انرژی زیاد دارد و از آنجایی سلول مرده نمی‌تواند انرژی را تامین کند در نتیجه آنزیم‌های هیدرولازی درون لیزوزوم آزاد شده و سبب از بین رفتن اندامکها و خود سلول می‌شوند.

در غشای لیزوزوم پمپهای پروتئینی وابسته به
ATP وجود دارند که با مصرف انرژی پروتون H+ را وارد لیزوزوم می‌کند تا محیط اسیدی با PH حدود 4.5 تا 5 ایجاد کرده و شرایط اسیدی برای آنزیم‌های هیدرولازی لیزوزوم فراهم و شیب PH را در غشای لیزوزوم برقرار نماید که نتیجه آن PH پایین‌تر از 5 در ماتریکس لیزوزوم است. از طرف دیگر تراکم یونهای H+ در مجاورت سطح درونی غشای لیزوزوم زیاد است و PH بسیار کاهش یافته و حتی تا حدود 2 می‌رسد و این PH پایین‌تر از PH مناسب برای فعالیت آنزیم‌های هیدرولازی لیزوزومی یعنی (PH (4 - 5 است. در نتیجه آنزیم‌های هیدرولازی لیزوزوم بر روی غشا خود تاثیر ندارند. یونها هم در این عمل محافظتی نقش دارند. سطح درونی لیزوزوم پوشش گلیکوپروتئینی دارد که از غشا محافظت می‌کنند.

عوامل مخرب غشای لیزوزوم

عوامل مختلفی سلامت و تمامیت غشای لیزوزوم را از بین می‌برد که عبارتند از :


هورمونهای جنسی یا استروئیدها ، ویتامین‌های قابل حل در چربی ( A ، D ، E و K ) ، عده‌ای از آنتی بیوتیکها و برخی آنزیمهای تجزیه کننده از عوامل شیمیایی مخرب غشای لیزوزوم هستند. کورتیزول نقش پایدارکننده غشای لیزوزوم را دارد.


  • عوامل زیستی: مانند ویروسها ، عوامل روحی مانند تنش ، اضطراب ، شوک ، خستگی ، کار سنگین از عوامل مخرب غشای لیزوزوم هستند. آرامش روانی ، اکسیژن کافی و تغذیه مناسب از عوامل پایدارکننده غشای لیزوزوم می‌باشند.

انواع لیزوزوم

چهار نوع لیزوزوم در نظر گرفته می‌شود که اولی لیزوزوم اولیه و سه تای بعدی لیزوزوم ثانویه خوانده می‌شوند.

لیزوزوم اولیه

اندامکهای تک غشایی با ماده زمینه‌ای متراکم دارای آنزیم‌های هیدرولازی هستند که از بخش دور یا ترانس دستگاه گلژی مشتق شده ولی هنوز فعالیت آنزیمی خود را آغاز نکرده‌اند. لیزوزوم اولیه را پروتولیزوزوم نیز می‌گویند.
تصویر
!!لیزوزوم ثانویه
  • هتروفاگوزوم: که به نامهای هترولیزوزوم ، فاگولیزوزوم ، واکوئلهای هیدروفاژی یا واکوئلهای دگرخواری نیز نامیده می‌شوند. این لیزوزومها از تلفیق لیزوزومهای اولیه با وزیکولهای حاوی مواد برون سلولی مانند حفره‌های فاگوسیتوزی یا پینوسیتوزی یا اندوزوم ثانویه تشکیل می‌شوند. سپس مواد برون سلولی یا بیگانه بوسیله آنزیمهای هیدرولیزی لیزوزوم اولیه حذف می‌شود. برخی باکتریها از جمله باکتری جذام از عمل دگرخواری مصون می‌ماند و به خوبی در لیزوزوم‌ها زنده می‌ماند.

  • اتوفاگوزوم: که به نامهای لیزوزومهای اتوفاژیک ، اتولیزوزوم ، واکوئل خودخوار و سیتولیزوزوم نیز خوانده می‌شود. این نوع از لیزوزومها از تلفیق لیزوزومهای اولیه با واکوئل‌های حاوی مواد سلولی مانند میتوکندری ، میکروبادی‌ها و اندامک‌های پیر و فرسوده ایجاد می‌شوند. گاهی قطعاتی از شبکه آندوپلاسمی ، بخشی از سیتوپلاسم سلول را احاطه کرده ، با لیزوزوم اولیه ادغام می‌شود و به لیزوزوم ثانویه که همان اتوفاگوزوم است تبدیل می‌شود و آنزیمهای آن مواد را تجزیه و هضم می‌کنند. تشکیل این لیزوزومها برای مبارزه با فقر غذایی ، انجام تمایزهای ویژه مانند حذف برخی اندامک‌ها ، حذف محتویات سلول برای تشکیل آوندهای چوبی و یا حذف بخشهای اضافی مانند حذف مجرای مولر در پرندگان ، تحلیل رفتن دم در دوزیستان در هنگام دگردیسی صورت می‌گیرد.

  • اجسام باقیمانده یا لیزوزوم کرینوفاژی: چنانچه عمل گوارش در لیزوزوم‌های ثانویه کامل نباشد، اجسام باقیمانده تشکیل می‌شود. لیزوزوم‌های حاوی این اجسام باقیمانده را جسم باقیمانده یا لیزوزوم کرینوفاژی نیز می‌نامند که دارای شکل نامنظم است. کرینوفاژی پدیده‌ای که حذف ترشحی را امکان پذیر می‌سازد.

  • اجسام متراکم یا تلولیزوزوم: برخی از مواد آندوسیتوزی و اگزوسیتوزی در برخی وزیکولهای گوارشی باقی می‌مانند و اجسام متراکم یا تلولیزوزوم را تشکیل می‌دهند و اغلب فعالیت هیدرولاری ندارند.

نقشهای لیزوزوم

  • گوارش درون سلولی: مواد گوناگون به روش‌های فاگوسیتوزی و اتوفاژی به لیزوزوم‌ها می‌رسند. گوارش آنها توسط آنزیم‌های لیزوزومی درون لیزوزومها صورت می‌گیرد و مواد حاصل از گوارش با عبور از غشای لیزوزوم به سیتوزول می‌رسند و مسیر سوخت و ساز خود را می‌گذرانند.

  • گوارش برون سلولی: برای مثال سلولهای استخوان خوار (استئوکلاستها) که در مغز زرد استخوان قرار دارند با آزاد کردن هیدرولازهای لیزوزومی موجب تخریب سلولهای استخوانی می‌شوند.

  • دخالت در تمایز سلولی و از بین بردن اندامکها

  • دخالت در پدیده اتولیز و مبارزه با فقر غذایی

  • دخالت در ایمنی سلولها: لیزوزومها باکتریها و ویروسهای وارد شده به سلول را توسط آنزیمهای خود تخریب می‌کند و از بین می‌برد.
  • تجمع مواد سمی از جمله جیوه در لیزوزومها

  • لیزوزومهای گیاهی با داشتن آنزیم های مختلف از جمله آلفا آمیلاز ، نوکلئازها در گوارش درون سلولی و برون سلولی و فرآیندهای رشد و نمو دخالت دارند.
+ نوشته شده در  پنجشنبه هجدهم مهر 1387ساعت 18:45  توسط دانشجویان علوم آزمایشگاهی دانشگاه تهران  | 

در سال 1898 کامیلوگلژی یاخته شناس ایتالیایی با اشباع کردن یاخته‌های عصبی جغد از نمکهای نقره و بررسی میکروسکوپی این یاخته‌ها ذراتی تیره ، هلالی شکل و به صورت شبکه درهم رفته‌ای را در مجاورت هسته هر یاخته مشاهده کرد که آن را دستگاه شبکه‌ای درونی نامید. این مجموعه بعدها به افتخار گلژی ، دستگاه گلژی نامیده شد.

اطلاعات اولیه

با مطالعه سلولها توسط میکروسکوپهای نوری و الکترونی به این نتیجه رسیده‌اند که دستگاه گلژی هم در یاخته‌های جانوری و هم در یاخته‌های گیاهی وجود دارد و یکی از اجزای مهم ساختمانی یاخته‌هاست که بویژه در اعمال ترشحی سلولها فعالیت زیادی دارد. این دستگاه می‌تواند به صورت شبکه‌ای در مجاورت هسته ، یا به صورت بخشهای هلالی شکل و مجزا از یکدیگر به نام دیکتیوزومها در برشهای یاخته‌ها دیده شوند. دیکتیوزومها در گیاهان پیشرفته ، جلبکها و نیز در خزه‌ها مشاهده شده‌اند. در قارچها ، دیکتیوزومها کمیاب هستند و در پروکاریوتها تاکنون دیکتیوزومی شناخته نشده است.



تصویر دستگاه گلژی

ساختمان دستگاه گلژی

واحد ساختمانی یا بخش اصلی تشکیل دهنده دستگاه گلژی دیکتیوزوم است و شکلهای دیگر آن می‌توانند از اجتماع تعدادی دیکتیوزوم تشکیل شوند. هر دیکتیوزوم بطور معمول از اجتماع 3 تا 8 ساختمان کیسه‌ای که هر کدام را یک ساکول ، سیسترون با سیسترنا نیز می‌نامند تشکیل شده است.

ساکول یا سیسترن یا سیسترنا

کیسه‌های پهن و قرصی شکل غشایی هستند که بخش میانی صاف و وسعتی حدود یک میکرومتر دارند. اما کناره‌های کیسه بسیار چین خورده و متراکم است که قدرت جوانه زدن دارند و وزیکولهای کوچکی را ایجاد می‌کنند. هر ساکول حالت کمانی دارد و یک سطح آن برآمده و سطح دیگر فرو رفته است. ضخامت غشای ساکول همانند غشای شبکه آندوپلاسمی است. سطح سیسترن یا ساکول صاف و بدون ریبوزوم است. بین ساکولهای یک دیکتیوزوم سیتوزول وجود دارد و توسط پروتئینهای رشته‌ای و لوله‌ای بهم متصل شده‌اند. همه زیر لوله‌های پروتئینی که در سیتوزول بین دو کیسه یا ساکول قرار دارند همسو هستند.

دیکتیوزوم

هر دیکتیوزوم دستگاه گلژی دارای سه سطح یا سه ناحیه است.
  • ناحیه یا قطب محدب: این قطب به نامهای مختلف از جمله سطح نزدیک ، سطح تشکیل ، سطح کروموفیل ، سطح اسموفیل و سطح سیس (Cis) نامیده می‌شود. این بخش نزدیک به شبکه آندوپلاسمی و گاهی پوشش هسته‌ای قرار دارد و از راه حفره‌های گذر یا وزیکولهای انتقالی با شبکه آندوپلاسمی ارتباط دارد و مواد از ناحیه Transition شبکه آندوپلاسمی به دستگاه گلژی می‌رسد. این سطح کروموفیل یا رنگ دوست است.

    ساکولهای جدید از این سطح بر روی ساکولهای قدیم قرار می‌گیرند و به همین جهت سطح تشکیل نیز نامیده می‌شوند. غشاهای سیترناهای جدید نازکتر از قدیمیها هستند. وزیکولهای کوچکی به نام وزیکولهای انتقالی یا حفره‌های گذر به عنوان ساختارهای انتقالی برای حمل مواد از شبکه آندوپلاسمی دانه‌دار به گلژی در منطقه سیس وارد عمل می‌شود. گاهی برخی وزیکولها از بخش سیس گلژی به شبکه آندوپلاسمی برگردانده می‌شوند.

  • ناحیه میانی: چند کیسه یا ساکول دارد که بطور منظم روی هم قرار گرفته‌اند. تعداد این کیسه‌ها به نوع سلول بستگی دارد و اغلب نزدیک به 5 است.

  • ناحیه یا قطب مقعر: به نامهای سطح ترشح ، سطح گود یا کاو ، سطح بلوغ ، منطقه ترانس ، سطح کروموفوب یا رنگ گریز نیز خوانده می‌شود. این سطح دور از شبکه آندوپلاسمی و در مجاورت کیسه‌های ترشحی و گرانولهای ذخیره‌ای قرار دارد و مواد از این طریق از گلژی خارج می‌شوند و با واسطه حفره گلژی به سوی بخشهای دیگر از جمله غشای سیتوپلاسمی می‌روند. در این سطح ساکولها یا سیسترناهای قدیمی به صورت حفره یا وزیکول در می‌آیند که مواد ترشحی در آنها وجود دارد.



تصویر

تفاوت دستگاه گلژی در سلولهای گیاهی و جانوری

در تفسیر دستگاه گلژی هنوز اختلاف نظر وجود دارد.برخی پژوهشگران مجموعه 5 - 4 دیکتیوزوم را که مجاور هم قرار گرفته و بوسیله لوله‌های بسیار باریکی بهم متصل شده‌اند دستگاه گلژی نامیده‌اند. برخی دیگر معتقدند که همه دیکتیوزومهای یاخته می‌تواند در ارتباط و پیوستگی باشند و مجموع آنها را دستگاه گلژی می‌نامند. در یاخته‌های جانوری دیکتیوزومها اغلب بهم پیوسته‌اند و شبکه‌ای واقعی را تشکیل می‌دهند که همان دستگاه گلژی است. در یاخته‌های گیاهی دیکتیوزومها اغلب جدا از هم هستند و به همین دلیل مشاهده میکروسکوپی آنها نیز دشوارتر است.

ترکیب شیمیایی دستگاه گلژی

اساس ترکیب شیمیایی دستگاه گلژی فسفو لیپو پروتئینی است. این دستگاه حاوی پلی سارکاریدها ، مواد قندی مثل گلوکز آمین ، گالاکتوز ، گلوکز ، مانوز و فوکوز هستند. آنزیمهایی در بخشهای مختلف دیکتیوزوم وجود دارد. نظیر ویتامین پیروفسفاتاز ، فسفاتازهای اسیدی ، نوکلئوتید آدنین دی‌نوکلئوتید فسفاتاز ، گلوکز 6 - فسفاتاز و NADH - سیتوکروم رداکتاز که دو تای آخر از آنزیمهای شاخص شبکه آندوپلاسمی می‌باشند.

حضور آنها در دستگاه گلژی که در قسمت لبه‌های متورم کیسه قرار دارند نشانه ارتباط شبکه آندوپلاسمی و دیکتیوزوم است. یکی از عمده‌ترین و شاخص‌ترین گروه آنزیمی بخش گلژی گلیکوزیل ترانسفرازها هستند که با انتقال قندها به
پروتئینها و به لیپیدها موجب تشکیل گلیکو پروتئین و گلیکو لیپید می‌شوند. ضمنا آب ، مواد معدنی و گلیکو پروتئین از دیگر ترکیبات شیمیایی گلژی هستند.

منشا دستگاه گلژی

مسئله خاستگاه دیکتیوزومها هنوز مورد بحث است و در این زمینه فرضیه‌ها و نظریه‌های چندی ارائه شده است. بدیهی است که هر یاخته در شرایط عادی بطور معمول تعدادی از دیکتیوزومهای خود را از یاخته والدی به ارث برده است. سه نظریه مهم از این قرارند:
  • ایجاد وزیکولها و یا حفره‌هایی از شبکه آندوپلاسمی صاف و یا گاهی از پوشش هسته‌ای که بر سطح نزدیک یا سطح تشکیل دیکتیوزوم افزوده می‌شود. البته این پدیده امروز مورد بحث است و تائید عمومی ندارد زیرا حفره‌های گذر یا انتقالی جدا شده از شبکه آندوپلاسمی بیشتر جذب کناره‌های کیسه‌های دیکتیوزومی می‌شوند و عاملی برای پایداری و امکان جوانه زنی کیسه‌ها را فراهم می‌کند.

  • تشکیل از نو با زیر بنای به هم پیوستن قطعاتی از شبکه آندوپلاسمی دستگاه گلژی را بوجود می‌آورد.

  • دیکتیوزومهای جدید از تقسیم دیکتیوزومهای پیشین بوجود می‌آید.



تصویر

اعمال دستگاه گلژی

این دستگاه اعمال زیاد و مهمی را انجام می‌دهد و از آن به پلیس راه سلول یاد می‌کنند. اعمال آن را تیتروار بیان می‌کنیم :


  • پردازش و آماده سازی محصولات تازه سنتز شده سلولی.

  • گلیکوزیلاسیون پروتئینهای ترشحی: این فرایند در شبکه آندوپلاسمی دانه‌دار آغاز می‌شود اما طویل شدن و پردازش زنجیره پلی‌ساکارید در گلژی انجام می‌گیرد.

  • سولفاتاسیون: افزودن گروه‌های سولفات به پروتئینها در سطح دور یا ترانس انجام می‌گیرد.

  • افزودن گروه‌های فسفات به پروتئینها.

  • راهنمایی پروتئینها به سوی هدف نهایی.

  • دخالت در سازماندهی برخی از اندامکهای سلولی از جمله لیزوزومها.

  • دخالت در تشکیل ، گسترش و رشد غشای سلولی.

  • دخالت در ترشحات نورونی یا تشکیل کیسه‌های سیناسپی محتوی نوروترانسیمتر

  • ترشح موسیلاژها و مواد ژله‌ای با زیر بنای پلی ساکاریدهای اسیدی بویژه در سلولهای گیاهی.

  • دخالت در تولید و ترشح پولک و پوشش سیلیسی سطح جلبکها.

  • دخالت در اگزوسیتوز سلول.

  • ایجاد تغییرات شیمیایی در مولکولها.
+ نوشته شده در  پنجشنبه هجدهم مهر 1387ساعت 18:43  توسط دانشجویان علوم آزمایشگاهی دانشگاه تهران  | 

RNA مخفف اسید ریبونوکلئیک است که یکی از انواع اسیدهای نوکلئیک می‌باشد. در داخل سلول انواع مختلف RNA وجود دارد که هر کدام از آنها وظایف مخصوص به خود را دارند.

مقدمه

RNA صرف نظر از انواعی که دارای ساختمان خاصی است. برخلاف DNA که ساختمان مارپیچ دو رشته‌ای دارد RNA معمولا یک رشته‌ای و تقریبا صاف و بدون تاخوردگی و یا به صورت کلاف است. علت اصلی عدم تشکیل مارپیچ دو رشته‌ای RNA مزاحمت فضایی گروه OH متصل به کربن شماره 2- قند ریبوز است که مانع پیچش لازم می‌شود. زیرا گروه OH به طرف داخل محور مارپیچ قرار می‌گیرد و مانع فرم پایدار می‌گردد.

بنابراین حتی در مقابل DNA الگو که دقیقا مکمل RNA است، RNA نمی‌تواند به شکل مارپیچی به آن متصل شود. همین خاصیت RNA باعث عدم پایداری آن در محیط قلیایی می‌شود، بطوری که در محیط قلیایی ، RNA به مونونوکلئوتیدها تجزیه می‌شود، در حالی که DNA در محیط قلیایی فقط به صورت تک رشته‌ای درمی‌آید ولی تجزیه نمی‌شود.

img/daneshnameh_up/2/21/RNA.1.gif


 

انواع RNA

mRNA

mRNA یا RNA پیک به صورت تک رشته‌ای است. وظیفه اصلی پروتئین سازی را به عهده دارد و حاوی کدهای ژنتیکی برای ساخت پروتئین می‌باشد. پایداری آن کم است بطوری که گاهی پس از دو دقیقه بوسیله RNAase تجزیه می‌شود و به همین دلیل استخراج mRNA مشکل می‌باشد. گاهی هنوز ترجمه قسمت انتهایی mRNA تمام شده است که ابتدای mRNA تجزیه می‌شود. ولی در یوکاریوتها با مکانیسمهای خاص پایداری mRNA افزایش یافته است بطوری که گاهی پایداری mRNA در سلولهای یوکاریوت به 10 ساعت می‌رسد.

rRNA

rRNAها یا RNA های ریبوزومی اصلی‌ترین اجزای تشکیل دهنده ریبوزومها می‌باشند و نام ریبوزوم نیز از ریبونوکلوئیک اسید (RNA) گرفته شده است. RNAهای ریبوزومی نسبت به mRNAها پایدارترند. همچنین پروتئینهای ریبوزومی نیز به آنها متصل می‌شوند و باعث پایداری و عدم تجزیه rRNAها در مقابل RNase ها می‌شوند. rRNAهای پروکاریوتی شامل 16s ، 23s و 5.8s و rRNAهای یوکاریوتی شامل 18s ، 28s ، 5s و 5.8s می‌باشند.

tRNA

tRNAها یا RNA های ناقل مولکولهای RNA کوچک به طول 75 تا 85 نوکلوئید هستند که وظیفه آنها انتقال اسید آمینه‌ها به داخل جایگاه خاص ریبوزوم می‌باشد. در واقع عمل اصلی ترجمه در پروتئین سازی را tRNA به عهده دارد، زیرا از یک طرف یک کد سه تایی روی mRNA را تشخیص می‌دهد و از طرف دیگر نیز اسید آمینه خاص مربوط به این کد سه تایی را حمل می‌کند که به زنجیره پلی پپتیدی اضافه می‌شود. در داخل سلولهای مختلف ، تعداد متفاوتی از tRNA یافت می‌شود، ولی حداقل 20 خانواده از tRNA ها وجود دارد که هر خانواده یک اسید آمینه را حمل می‌کند. شکل کلی tRNA به صورت برگ شبدر می‌باشد. اتصال اسید آمینه به tRNA بوسیله آنزیم خاصی به نام آمینو اسیل - tRNA سنتتار انجام می‌شود.

img/daneshnameh_up/3/36/RNA.5.JPG


 

hnRNA

این نوع RNA مخصوص سلولهای یوکاریوت می‌باشد که در آنها مواد ژنتیکی در داخل هسته قرار دارند در داخل هسته ، RNA در ابتدا به صورت رشته‌های حاوی نواحی کد کننده و غیر کد کننده ساخته می‌شود. به نواحی کدکننده اگزون و به نواحی غیر کد کننده ، انترون گفته می‌شود. این RNA برای تبدیل شدن به mRNA باید فرآیندهای خاصی را پشت سر بگذارد و قسمتهای انترون آن حذف شود به این RNA حاوی نواحی اضافی hnRNA گفته می‌شود که پس از اتمام فرآیند اصلاح تبدیل به mRNA می‌شود.



 

snRNA

snRNA قطعات کوچک RNA هستند که در داخل هسته وجود دارند و وظایف مختلفی را به آنها نسبت می‌دهند. گروهی معتقدند که این RNA ها همان پرایمرهای شروع همانند سازی RNA در سلول هستند و گروهی دیگر عمل دخالت در فرآیند اصلاح RNA را به آنها نسبت می‌دهند. گروهی نیز این قطعات را حاصل از اینترونها می‌دانند.

scRNA

scRNAها قطعات کوچک RNA موجود در سیتوپلاسم سلول می‌باشند که مانند scRNA عمل اصلی آنها هنوز مشخص نیست، ولی گروهی از دانشمندان معتقدند که scRNAها به عنوان قسمتی از بعضی آنزیمها عمل می‌کنند. برای مثال در پروتئین S.R.P وجود دارند.

ساختمان RNA پلی مراز

عمل نسخه برداری نیاز به آنزیم خاصی دارد. از آنجایی که سنتز RNA به صورت متصل کردن نوکلوئیدهای مختلف به یکدیگر یا به عبارتی ، پلی مریزه کردن آنها می‌باشد ، به این آنزیم خاص RNA پلی مراز می‌گویند. ساختار این آنزیم در موجودات مختلف نسبت متفاوت است، ولی اصول کلی ساختار آن ثابت می‌باشد. شناخته شده ترین RNA پلی مراز مطالعه شده ، RNA پلی مراز E.Coli است. این آنزیم دارای چهار زیر واحد اصلی و تعدادی زیر واحد فرعی می‌باشد.

زیر واحدهای اصلی آن شامل دو عدد زیر واحد α ، یک زیر واحد β و یک زیر واحد β می‌باشد. به مجموع این چهار زیر واحد که به صورتα²ββ نشان داده می‌شود، قسمت تنه آنزیم گفته می‌شود. دو زیر واحد فرعی مربوط به RNA پلی مراز ، زیر واحد σ و زیر واحد NuSA می‌باشند. این زیر واحدها در مواقع خاصی به RNA پلی مراز متصل می‌شوند و سپس از آن جدا می‌شوند وزن مولکولی آنزیم RNA پلی مراز در باکتریهای مختلف متفاوت است ولی تعداد زیر واحدها و نوع آنها مشابه RNA پلی مراز E.Coli می‌باشد.



 

انواع RNA پلی مراز در یوکاریوتها

  1. RNA پلی مراز I ، وظیفه آن ساخت rRNA می‌باشد.
  2. RNA پلی مراز II ، وظیفه آن ساخت mRNA و تعداد کمی RNA های کوچک مانند SnRNA می‌باشد.
  3. RNA پلی مراز III ، وظیفه آن ساخت tRNA و rRNA های کوچک می‌باشد.

img/daneshnameh_up/6/6c/RNA.2.png

ساختمان RNA پلی مراز E.Coli به صورت α²ββ می‌باشد که این ساختمان نسبت به ساختمان DNA پلی مراز ساده است و بسیاری از قسمتهای مربوط به DNA پلی مراز را ندارد و بنابراین باید تمامی اعمال خودش را به تنهایی انجام دهد. به همین دلیل عمل نسخه برداری در مقایسه با عمل همانند سازی کندتر صورت می‌گیرد.

 

+ نوشته شده در  پنجشنبه دوازدهم اردیبهشت 1387ساعت 23:25  توسط دانشجویان علوم آزمایشگاهی دانشگاه تهران  | 

ریبوزمها از اندامکهای بدون غشای سیتوپلاسمی در همه یاخته‌های پروکاریوتی هستند که در سال 1983 بوسیله پالاد کشف شده‌اند. این اندامکها را دانه‌های پالاد نیز می‌نامند. از آنجا که سنتز پروتئینها بوسیله ریبوزومها صورت می‌گیرد اهمیت زیادی دارند. ریبوزومها ذراتی بیش و کم کروی ، متراکم (کدر) نسبت به الکترونها هستند که نظرشان از 40 تا حدود 300 آنگستروم می‌رسد.

تاریخچه شناخت ریبوزومها

شناخت اولیه ریبوزومها مربوط به کلود می‌شود که در سال 1941 با اولترا سانتریفوگاسیون افتراقی (مرحله‌ای) موفق به جدا سازی ذراتی کوچکتر و سبکتر از میتوکندریها شد که ذراتی به قطر 500 تا 2000 میکرون و سرشار از RNA بودند که از خرد شدن قطعات شبکه آندوپلاسمی ضمن اولترا سانتریفوگاسیون ایجاد می‌شوند. می‌توانند حتی در شرایط آزمایشگاهی اسیدهای آمینه رادیواکتیو را به سرعت در ساختمان پروتئینها وارد کنند.

تصویر


 

اشکال ریبوزومها

  1. ریبوزمهای آزاد سیتوپلاسمی که در سیتوپلاسم یاخته‌های پروکاریوتی از نوع 70s در سیتوپلاسم یاخته‌های یوکاریوتی از نوع 80s یعنی بزرگتر و سنگین‌تر هستند.

  2. ریبوزومهای چسبنده به غشای شبکه آندوپلاسمی دانه‌دار که این حالت تنها در یاخته‌های یوکاریوتی که شبکه آندوپلاسمی دارند، دیده می‌شود. در این یاخته‌ها نسبت ریبوزمهای آزاد سیتوپلاسمی به ریبوزمهای چسبیده به غشای شبکه بر حسب شرایط فیزیولوژیکی یاخته تغییر می‌کند و هر چه سنتز پروتئینهای ترشحی و پروتئینهای ساختمانی ویژه‌ای که در ساختمان غشای شبکه آندوپلاسمی ، غشای کیسه‌های گلژی ، لیزوزومها و پلاسمالم وجود دارند بیشتر باشد، نسبت ریبوزومهای چسبیده به غشای شبکه نیز بیشتر می‌شود.

    در یاخته‌های ترشحی آسینیهای باز لوزوالمعده که آنزیمهای گوارشی مختلف را می‌سازند و یاخته‌های خونی که ایمنوگلوبین‌ها را می‌سازند تا 90% ریبوزومها به غشای شبکه آندوپلاسمی چسبیده‌اند. بر عکس در رتیکولوسیتها ، بافتهای مریستمی گیاهان و یاخته‌های عصبی رویانی بیشتر ریبوزومها آزادند. در یاخته‌های هلا که نوعی یاخته سرطانی هستند تنها 15% ریبوزومها به غشای شبکه چسبیده‌اند.

  3. ریبوزومهای موجود در اندامکهای مثل ریبوزومهای میتوکندری و ریبوزومهای کلروپلاستی: این ریبوزومها نیز تنها در یاخته‌های یوکاریوتی وجود دارند. ضریب ته نشینی آنها بر حسب گونه یاخته‌ها متفاوت است و به هر حال سبکتر و کوچکتر از ریبوزومهای سیتوپلاسمی یاخته مربوط هستند. از نظر ساخت و کار ، حساسیت به آنتی بیوتیکها و بیش از آن ابعادشان به ریبوزومهای پروکایوتی شبیه‌اند.

نحوه قرار گیری ریبوزومها

ریبوزومهای سیتوپلاسمی ، اندامکی و ریبوزمها چسبنده به غشای آندوپلاسمی می‌توانند به حالت منفرد (مونوزوم) یا به حالت چند تایی (پلی زوم) باشند. مجموع حدود 5 تا 80 ریبوزوم را که به مولکولی از mRNA چسبیده‌اند، پلی زوم نامند. ریبوزومها تنها وقتی که به حالت پلی زوم باشند، سنتز پروتئین دارند. گاهی در سیتوپلاسم پلی زومها حالت مارپیچی یا حلزونی به خود می‌گیرند فراوانی این نوع پلی زومها در یاخته را نشانه نوعی اختلال در فرآیند سنتز پروتئین می‌داند.

تعداد ریبوزومها در یک یاخته

تعداد ریبوزمهای یک یاخته تا حدود پانصد هزار می‌رسد. این تعداد در یاخته‌های مختلف و نیز در شرایط مختلف زیستی و فیزیولوژیکی در یک یاخته تغییرات زیادی دارد. در یک یاخته باسیل کولی حدود ده هزار تا پانزده هزار ریبوزوم موجود است. در اغلب در پروکاریوتها حدود 104 ، در یوکاریوتها حدود 105 تا 107 و در اووسیتها بطور معمول بیش از 1012 ریبوزوم وجود دارد.

عمر متوسط ریبوزومها

عمر متوسط ریبوزومها در حدود 6 ساعت است. بنابراین بازسازی پیوسته آنها ضرورت دارد. سرعت بازسازی در یاخته‌های مختلف 10 تا 100 ریبوزوم در هر ثانیه است. بازسازی ریبوزومها در یاخته‌های پروکاریوتی در سیتوپلاسم و بی‌تردید ضمن رونویسی از ژنهای rRNA و در یاخته‌های یوکاریوتی در ارتباط با هستک صورت می‌گیرد ترکیبات بازدارنده رونویسی و همچنین سم آمانیتین که در قارچ آمانتیا وجود دارد این بازسازی را متوقف می‌کنند.



 

روشهای جداسازی و مشاهده ریبوزومها

به روشهای مختلف زیر می‌توان ریبوزومها را جداسازی و مشاهده کرد ساکارز و حضور Mg+2 جدا می‌کنند. اولترا سانتریفوگاسیون به مدت یک ساعت و 100000gr انجام می‌شود. برای جدا کردن ریبوزومها از غشای شبکه آندوپلاسمی از دزوکسی کولات سدیم یا بکارگیری محلولهای نمکی دارای غلظت مناسب و انجام اولترا سانتریفوگاسیون استفاده می‌شود.

تمام مراحل جداسازی باید با حضور غلظت مناسبی از یونهای Mg+2 صورت گیرد. این غلظت مناسب با استفاده از کلرور منیزیم 0.01 مولکول گرم در لیتر تامین می‌شود. در غلظتهای زیاد آن (بیش از 0.1 مولکول گرم در لیتر) ریبوزومها به هم می‌چسبند و به حالت دیمر در می‌آیند و در غلظت 0.001 مولکول گرم در لیتر کلرور منیزیم دو جزء ریبوزوم از هم جدا می‌شوند.

تصویر


 

ریخت شناسی ریبوزومها

از دو بخش کوچک و بزرگ تشکیل یافته است. در باسیل کولی ، بخش کوچک کشیده ، خمیره و دارای قسمتی متراکم و پیچیده است. بخش کوچک در گودی سطح فوقانی بخش بزرگ قرار گرفته است. بخش کوچک در 3/1 طول خود دارای دندانه‌ای کوچک است و مقابل به دانه دارای قسمتی متراکم و پیچیده است. بخش کوچک در گودی سطح فوقانی بخش بزرگ قرار گرفته است و حدود 3/1 از حجم کل ریبوزوم را تشکیل می‌دهد. بخش بزرگ که 3/2 حجم کل ریبوزوم را شامل می‌شود دارای یک سطح گود (مقعه) و سه زایده است.

سطح مقعر جایگاه چسبیدن بخش کوچک ریبوزومی است. زواید بخش بزرگ انگشت مانند ، کوتاه و در انتها مدورند. زایده میانی بزرگتر و زواید جانبی کوچکترند. بخش بزرگ ریبوزوم از نیم رخ حالتی شبیه صندلی را حتی با یک بخش پشتی و در جای دست دارد. در یوکاریوتها بخش بزرگ شبیه آن باسیل کولی است اما یک زایده طویل است که به سوی سمت راست بخش بزرگ کشیده شده است.

پروتئین سازی نقش اصلی ریبوزومها

پروتئینها از ماکرومولکولهای اساسی یاخته‌های هستند که بیش از نیمی از وزن خشک آنها را می‌سازند. در ساختار اندامکها و اجزای فعال یاخته‌ها یافت می‌شوند و در ساخت و کار آنها نقش بنیادی دارند. ماکرومولکهای پروتئینی از ترکیب اسیدهای آمینه با اتصالهای کووالانسی پپتیدی ایجاد می‌شوند. در بیوسنتز آنها از جمله ریبوزومها ، RNA های پیامبر ، RNA های ناقل و ... شرکت دارند. وقتی که ریبوزومها در سنتز پروتئینها فعال نیستند اغلب به صورت ذخیره‌ای از اجزای آزاد در سیتوپلاسم پراکنده‌اند.
+ نوشته شده در  پنجشنبه دوازدهم اردیبهشت 1387ساعت 23:23  توسط دانشجویان علوم آزمایشگاهی دانشگاه تهران  | 

مقدمه

تقسیم میوز شامل دو بخش میوز اول و میوز دوم است. در اثر تقسیم میوز ، گامتها بوجود می‌آیند. این تقسیم عموما قبل از تشکیل گامتها یا همزمان با تولید آنها صورت می‌گیرد. این فرایند سبب می‌شود که در موقع تشکیل تخم ، تعدادکروموزومها مضاعف نشود. تقسیم میوز در اندام تولید مثلی نر و ماده که محتوی سلولهای دیپلوئیدی مخصوصی است، صورت می‌گیرد. این سلولها دو تقسیم متوالی را طی می‌کنند، اما کروموزومها فقط یک بار مضاعف می‌شوند. از این تقسیم چهار سلول حاصل می‌آید که تعداد کروموزومهای هر یک نصف تعداد اولیه است.



تصویر

بخش اول میوز

بخش اول میوز همانند میتوز خود شامل چهار مرحله است.

پروفاز اول

مرحله پروفاز در میوز اول روند پیچیده‌ای است که بسیار کندتر از میتوز صورت می‌گیرد و شامل پنج مرحله است:


  • زیرمرحله لپتوتن:

    آغاز پروفاز با افزایش حجم هسته‌ای مشخص می‌شود. کروموزومها به صورت تخمهای دراز ، نازک و تاب خورده به شکل دانه‌های تسبیح به نام کرومومر ظاهر می‌شوند. این ریز مرحله را لپتوتن گویند. کروموزومها منفرد به نظر می‌رسند، در حالی که بیشتر DNAی یاخته قبلا دو برابر شده و کروموزومها دارای دو
    کروماتید هستند. بر اساس گفته «براون» ، سنتز DNA تا مرحله لپتوتن ادامه دارد و زمان چرخه یاخته‌ای را تشکیل می‌دهد.

  • زیرمرحله زیگوتن:

    در این مرحله کروموزومهای همساخت به ترتیب ویژه‌ای جفت می‌شوند. نیرویی که دو جفت کروموزوم را به سوی یکدیگر می‌کشد، هنوز مشخص نشده است. این روند را سیناپس می‌گویند و جفت کروموزومهای همساخت را بی‌والانت (تتراد) می‌گویند.

  • زیرمرحله پاکی‌تن:

    در این مرحله
    هستک از نظر اندازه رشد می‌کند و کروموزومها کوتاهتر و ضخیخم‌تر می‌شوند. حال هر کدام یک تتراد هستند که از دو کروموزوم همساخت یا 4 کروماتید تشکیل شده‌اند. هر کروماتید از یک تتراد ، به دور کروماتید خواهر خود می‌پیچد و کوتاهتر و ضخیم‌تر می‌شود. هر کروموزوم همساخت سانترومر مستقل دارد. بنابراین هر کروماتید سانترومر خاص خود را دارا است.

    مهمترین رویداد در زیرمرحله پاکی‌تن ، تشکیل کیاسما به هنگامی است که دو کروماتید خواهر از هر کروموزوم همساخت ، قطعاتی را بین خود مبادله می‌کنند. تبادل قطعات بین دو کروماتید از دو کروموزوم همساخت را کراسینگ اور (تقاطع کروموزومی) گویند. زیرمرحله پاکی‌تن طولانی است. در پایان این زیرمرحله ، نیرویی سبب جدا شدن کروماتیدها از یکدیگر می‌شود.

  • زیرمرحله دیپلوتن:

    در این مرحله کروموزومها ، جدا شدن از یکدیگر را آغاز می‌کنند، اما چون در بعضی نقاط تبادل صورت گرفته است، لذا در این نقاط متصل به یکدیگر باقی می‌مانند. این ریز مرحله حقیقتا کیاسما نام دارد و از نظر ژنتیکی دارای اهمیت فراوانی است، زیرا تبادل بین کروماتیدهای ناخواهری در این زیرمرحله صورت می‌گیرد. کراسینگ اور به تبادل
    ژنها می‌انجامد و سبب تشکیل کروماتیدهای نوترکیب می‌شود. در ژنتیک مولکولی ، کراسینگ اور به عنوان وسیله تجربی برای نقشه برداری کروموزومی بکار می‌رود.

  • زیرمرحله دیاکینز:

    در این مرحله ، کروموزومها کوتاهتر و ضخیم‌تر شده و کیاسما ناپدید می‌شود. کروموزومهای همساخت از دو سو به سمت محیط
    هسته کشیده می‌شوند، اما جدا شدن کامل کروماتیدها صورت نمی‌گیرد. کروموزومهای همساخت فقط در انتها متصل به یکدیگر باقی می‌مانند و ساختار حلقه مانند عریضی را تشکیل می‌دهند. به علاوه هستک و غشای هسته ناپدید می‌شود و دوک بطور کامل تشکیل می‌گردد. کرومزومهای تتراد در صفحه متافاز قرار می‌گیرند.

متافاز اول

این مرحله پس از دیاکینز آغاز می‌شود و همانند متافاز میتوز است. کروموزومهای همساخت در صفحه استوایی باقی می‌مانند و از طریق سانترومرها به رشته‌های دوک متصل می‌شوند.

آنافاز اول

در آنافاز اول ، کروماتیدهای خواهر از هر کروموزوم همساخت که به وسیله سانترومر به یکدیگر متصل‌اند، به قطبهای مربوط به خود می‌روند. کیاسما کاملا متلاشی می‌شود و کروماتیدهای ناخواهری از هم جدا می‌گردند. این کروماتیدها ، با کروموزومهای پدری و مادری خود تفاوت دارند. در مقایسه با آنافاز میتوز که در آن هر کروموزوم یک کروماتید دارد، هر کروموزوم در مرحله آنافاز میوز ، از دو کروماتید تشکیل شده است که احتمالا یکی از کروماتیدها ، نوترکیب است.

تلوفاز اول

در این مرحله کوتاه ، پیچش کروماتیدها باز شده و کروماتیدها دراز می‌شوند و تا مدتی در حالت فشردگی باقی می‌مانند. غشای هسته در اطراف هر گروه کروماتید تشکیل می‌گردد و دو هسته مجزا بوجود می‌آیند. در بعضی موجودات پس از تشکیل غشاها در هسته ، هر هسته دختر قبل از اینکه دومین تقسیم میوز آغاز شود، مدتی در مرحله اینترفاز باقی می‌ماند. باید توجه داشت که بین دو تقسیم میوز (ساختمان DNA|DNA)) ساخته نمی‌شود.



تصویر

مرحله دوم میوز

این مرحله تقسیم همانند میتوز است، اما با این تفاوت که کروموزومها از دو کروماتید تشکیل شده‌اند. در این نوع تقسیم هر دو هسته خواهر از مراحل پروفاز ، متافاز ، آنافاز و تلوفاز دوم می‌گذرند. در این مرحله مضاعف شدن DNA صورت نمی‌گیرد.

پروفاز دوم

پروفاز این مرحله بسیار کوتاه است. دوک تشکیل می‌شود و کروموزومهای دو کروماتیدی و مضاعف روی آن قرار می‌گیرند.

متافاز دوم

در متافاز دوم ، کروموزومها به قسمت وسط دوک می‌روند و در آنجا مستقر می‌شوند. نکته جالب توجه این است در متافاز میوز اول سانترومرهای کروموزومهای همساخت از یکدیگر جدا می‌شوند، در حالی که در میوز دوم سانترومرهای کروماتیدهای خواهری از یکدیگر فاصله می‌گیرند.

آنافاز دوم

در آنافاز دوم میوز کروماتیدهای هر کروموزوم از هم جدا می‌شوند و به دو قطب سلول می‌روند.

تلوفاز دوم

در تلوفاز دوم میوز ، تقسیم میوزی کامل می‌شود و چهار سلول بوجود می‌آید. در بسیاری از جانداران ماده ، سیتوپلاسم سلولها در میوز بطور نامساوی تقسیم می‌شود و فقط یک سلول به جای چهار سلول حاصل می‌آید که سیتوپلاسم فراوان دارد و مبدل به تخمک می‌شود. سه سلول کوچک باقیمانده معمولا می‌میرند. در بعضی از جانداران نر چهار سلول حاصل مبدل به اسپرم می‌شوند.
+ نوشته شده در  سه شنبه بیستم فروردین 1387ساعت 10:50  توسط دانشجویان علوم آزمایشگاهی دانشگاه تهران  | 

ژن یا ماده وراثتی (hereditary factor)، ماده پیچیده‌ای است که در هنگام تقسیم می‌تواند همانند خود را بوجود آورد. واحدهایی از این ماده وراثتی از پدر و مادر به فرزندان انتقال می‌یابند. این واحدها دارای ویژگیهای بسیار پایدار بوده و بطور مشخص موجودی را که صاحب آن است، تحت تاثیر قرار می‌دهند. ژنها بر روی کروموزومها در جایگاههای ویژه ، مرتب شده‌اند.

دید کلی

پس از آنکه اسیدهای نوکلئیک بوجود آمدند، احتمال می‌رود که پیدایش جانداران جدید با سرعت بسیار زیادتری انجام گرفته باشد. این شتاب عظیم را ژنها ، که القاب کنونی اسیدهای نوکلئیک هستند امکان‌پذیر ساخته‌اند. اکنون جانداران بر طبق دستورالعمل‌هایی که ژنهایشان فراهم می‌آورند، به تولید مثل می‌پردازند و به سبب اینکه نسلهای متوالی جانداران ، ژنها را به ارث می‌برند. پدید آمدن یک جاندار جدید به صورت فرایندی کنترل شده و غیر تصادفی درآمده است. آنچه جاندار به ارث می‌برد تا حد زیادی بقای او را تعیین می‌کند، بنابراین وراثت از نظر سازگاری جانداران حائز اهمیت است.

اما چیزی که جانداران به ارث می‌برند، ماهیچه نیرومند ، برگ سبز ، خون قرمز یا مانند آن نیست، بلکه ژنها و دیگر محتویات سلولهای زاینده است. سپس در فردی که از این سلولها ناشی می‌شود، صفات قابل رویت تحت نظارت ژنهایی که به ارث برده است، پدید می‌آید. محصول این گونه وراثت موجود زنده منحصر به فردی است که در بعضی از صفات کلی خود به والدینش شباهت دارد و در بسیاری از صفات جزئی با آنها تفاوت دارد. اگر این تفاوتها کشنده نباشند یا سبب عدم باروری نشوند، جاندار حاصل می‌تواند زنده بماند و ژنهای خود را به نسلهای بعدی انتقال دهد.



تصویر

تاریخچه

«ویلیام هاروی» ، در سال 1651 ، این نظریه را بیان کرد که تمام موجودات زنده از جمله ، انسان ، از تخم بوجود آمده‌اند و اسپرم فقط فرایند تولید مثل نقش دارد. هاروی همچنین تئوری اپی‌ژنز را ارئه داد که طبق این تئوری در مرحله رشد جنینی ، ارگانها و ساختمانهای جدیدی از ماده زنده تمایز نیافته ، بوجود می‌آید. پژوهشهای جدید درباره وراثت بوسیله گرگور مندل که کشیشی اتریشی بود، در نیمه دوم قرن 19 آغاز شد. وی دو قانون مهم را کشف کرد که همه پیشرفتهای بعدی علم وراثت بر پایه آنها بنا نهاده شده است.

ژن به عنوان یک واحد عملکردی

تمام نوکلئوتیدها در DNA ، گهگاه دستخوش دگرگونی‌هایی می‌شوند که جهش (Mutation) نام دارد. پس از هر جهش ، ژن جهش یافته (Mutant) به جای ژن اولیه به سلولهای فرزند انتقال می‌یابد و به ارث برده می‌شود. DNA جهش یافته ، آنگاه صفات تازه‌ای بوجود می‌آورد که ارثی هستند. ژنهایی که جز ژنهای ساختمانی هستند، مسئول ساختن زنجیره‌های پلی پپتیدی هستند.

اگر جهشی در یکی از این ژنها ، روی دهد، مجموعه صفات و ویژگی‌هایی که ژن جهش یافته مسئول بخش کوچکی از آن می‌باشد، بطور مستقیم یا غیر مستقیم ، تحت تاثیر قرار خواهند گرفت و از آنجایی که بیشتر
پروتئین‌ها نقش آنزیمی بر عهده دارند، این جهش بر واکنشهایی که آنزیم مربوطه در آن دخالت دارد، اثر می‌گذارد. ژنهای دیگر که نقش تنظیم کننده دارند، فعالیت ژنهای دیگری را کنترل می‌کنند و جهش در این ژنها بر کنترل ژنهای ساختمانی اثر می‌گذارد. DNA هر موجود از تعدادی ژنهای مختلف تشکیل شده است.

در هنگام رشد ، هر ژن دقیقا ژن همانند خود را پدید می‌آورد. هنگامی که یک ژن جهش می‌یابد، ژن جهش یافته در تقسیمات بعدی سلول ، ژنهای جهش یافته همانند خود را بوجود می‌آورد و اگر این ژن یک ژن ساختمانی باشد، جهش منجر به تولید پروتئین جهش یافته می‌گردد. ژن جهش یافته و ژن اولیه نسبت بهم آللومورف (Allelomorph) نامیده می‌شوند.



تصویر

ژن و کروموزوم

یاخته‌های یک گیاه یا یک جانور دارای تعداد معینی کروموزوم است که ویژه آن گونه گیاهی یا جانوری می‌باشد و تعداد این کروموزومها در همه یاخته‌های آن فرد پایدار و یکسان است. بنابراین همه یاخته‌های یک فرد دارای مجموعه‌های ژنی یکسانی می‌باشند، مثلا در مگس سرکه در حدود 10 هزار ژن شناخته شده است. افراد مختلف یک گونه دارای آللهای متفاوت یک ژن در سلولهای خود می‌باشند. در هر کروموزوم ، ژنها بطور خطی قرار گرفته‌اند و نظام آنها پایدار و ثابت است. جایگاه ثابت هر ژن در کروموزوم که ویژه آن ژن است، لوکوس (Locus) نامیده می‌شود.

دو ژن آلل نمی‌توانند بطور همزمان در یک جایگاه وجود داشته باشند و در یک زمان هر جایگاه می‌تواند پذیرایی تنها یکی از ژنهای آلل باشد. برخی از ژنها به ویژه ژنهایی که در ساختن RNA دخالت دارند، چندین بار در یک مجموعه کروموزومی تکرار می‌شوند. در پدیده
میتوز ، پیش از تقسیم هسته ، ژنها و در نتیجه کرومزوم‌ها، دو برابر شده‌اند و هر یک از دو یاخته حاصل از تقسیم ، یکی از مجموعه‌های کروموزومی را دریافت می‌کند و از اینرو مجموعه‌های کروموزومی دو سلول دقیقا یکسان خواهد بود.

ژن و گوناگونی افراد

در یاخته‌های بدنی گیاهان و جانوران کروموزوم‌ها به صورت جفت وجود دارند و از نظر ظاهری یکسان می‌باشند (به جز کروموزوم‌های جنسی). در هر لنگه از یک جفت کروموزوم ، نظام جایگاههای ژنی ، همانند نظام جایگاههای لنگه دیگر می‌باشد و ژنهایی که در جایگاههایی همانند قرار دارند، ممکن است یکسان بوده و یا آلل یکدیگر باشند. در حالت نخست فرد از نظر دو ژن هموزیگوت و در حالت دوم هتروزیگوت می‌باشد. شماره کروموزوم‌ها در یاخته‌های حاصل از تقسیم میوز یا گامتها ، 2/1 تعداد کروموزوم‌ها در سلولهای پیکری است و در هر یک از گامتها ، تنها یک لنگه از یک جفت کروموزوم همانند ، در برخی از جایگاهها باهم متفاوت هستند.

در نتیجه گامتها نیز با هم متفاوت خواهند بود و چون توزیع کروموزومها در هر گامت از قانون احتمالات پیروی می‌کند، در نتیجه احتمال تولید گامتهای مختلف در صورتی که تعداد کروموزوم‌ها را در نظر بگیریم، خواهد بود. این حالت ،
تفکیک مستقل نامیده می‌شود. تقاطع کروموزومی (Crossing-Over) نیز به ایجاد تفاوتهای بیشتر بین گامتها ، کمک می‌کند.

سازمان یابی و ساختمان ژن

در ساده‌ترین حالت ، یک ژن را می‌توان به صورت قطعه‌ای از یک مولکول DNA و حاوی رمز برای توالی اسید آمینه‌ای یک رشته پلی پپتیدی و توالی‌های تنظیم کننده لازم برای بروز آن در نظر گرفت. به هر حال این توصیف برای ژنهای موجود در ژنوم انسان ، ناکافی است، زیرا تعداد ناچیزی ژن به صورت توالی‌های رمزدار پیوسته وجود دارد. بلکه در عوض در بین اکثریت ژنها ، یک یا بیش از یک ناحیه فاقد رمز موجود است. این توالی‌های حد فاصل که اینترون (intron) نامیده می‌شوند، ابتدا در هسته به RNA رونویسی می‌شوند، اما در RNA پیامبر بالغ در سیتوپلاسم وجود ندارند.

لذا اطلاعات توالی‌های اینترونی ، بطور طبیعی در فرآورده پروتئینی نهائی نمایانده نمی‌شود. اینترونها یک در میان با توالی‌های رمزدار یا اگزون (exon) که نهایتا توالی اسید آمینه‌ای پروتئین را رمز گردانی می‌کنند، قرار دارند. اگرچه تعداد کمی از ژنها در ژنوم انسان فاقد اینترون می‌باشند، اکثر ژنها حداقل یک و معمولا چندین اینترون دارند. ژن دیستروفین وابسته به جنس که حاوی 2 میلیون جفت باز است، کمتر از یک درصد آن حاوی اگزونهای رمزدار است. اینترونها در ساختار ژنها ، نقش حفاظت از اگزونها را در برابر جهشها بر عهده دارند.



تصویر

خصوصیات ساختمانی یک ژن معمولی انسان

ژن نه تنها توالی‌های رمزدار واقعی است، بلکه دارای توالی‌های نوکلئوتیدی مجاور لازم برای بروز مناسب ژن ، یعنی برای تولید یک مولکول RNA پیامبر طبیعی ، به مقدار صحیح ، در محل درست و در زمان صحیح حین تکامل و یا در طی چرخه سلولی نیز می‌باشد. توالی‌های نوکلئوتیدی مجاور ، پیامهای مولکولی شروع و پایان را برای ساخت RNA پیامبر رونویسی شده از ژن فراهم می‌کنند. ژن دارای دو انتهای به است. در انتهای ژن ، یک ناحیه پیشبر وجود دارد که شامل توالی‌های مسئول شروع مناسب رونویسی است.

پیشبرها و نیز عناصر تنظیم کننده می‌توانند محلهایی برای جهش در
بیماریهای ژنتیکی که قادرند مانع بروز طبیعی ژن شوند، باشند. این عناصر تنظیم کننده شامل تقویت کننده‌ها ، خاموش کننده‌ها و نواحی کنترل کننده جایگاه ژنی هستند. در انتهای ژن ، یک ناحیه ترجمه نشده مهم یافت می‌شود که حاوی پیامی برای اضافه شدن یک توالی از واحدهای آدنوزین به اصطلاح دم پلی A به انتهای RNA پیامبر بالغ است.

مبانی بروز ژن

جریان اطلاعات از ژن به پلی پپتید ، شامل چندین مرحله است.
  • رونویسی یک ژن در محل شروع رونویسی روی RNA کروموزومی ، بلافاصله از توالی‌های رمزدار آغاز می‌شود و در طول کروموزوم ادامه یافته، از چند صد جفت باز تا بیش از یک میلیون جفت باز و در هر دو گروه اینترونها و اگزونها و ناحیه بعد از پایان توالی‌های رمزدار را رونویسی می‌کند.

  • پس از تغییر یافتن در هر دو انتهای و رونوشت اولیه RNA ، بخشهای مربوط به اینترونها برداشته می‌شوند و قطعات مربوط به اگزونها به یکدیگر چسبانده می‌شوند.

  • پس از برش و چسباندن RNA ، RNA پیامبر حاصل که اینک فقط حاوی بخشهای رمزدار ژن است، از هسته به سیتوپلاسم سلول برده می‌شود و در آنجا نهایتا به توالی اسید آمینه‌ای پلی پپتید رمزگردانی شده ، ترجمه می‌گردد. هر یک از این مراحل ، در معرض بروز خطا هستند و جهشهایی که در هر یک از این مراحل مداخله می‌کنند، در ایجاد تعدادی از اختلالات ژنتیکی دخیل دانسته شده‌اند.
+ نوشته شده در  سه شنبه بیستم فروردین 1387ساعت 10:44  توسط دانشجویان علوم آزمایشگاهی دانشگاه تهران  | 

آملودیپین‌ برای‌ پایین‌ آوردن‌ فشار خون‌ در پرفشاری‌ خون‌ و تسکین‌ درد قلبی‌ تجویز می‌شود. پزشک‌ شما به‌ دلایل‌ دیگری‌ نیز ممکن‌ است‌ این‌ دارو را برایتان‌ تجویز کند. این‌ دارو در بدن‌ از طریق‌ ممانعت‌ از ورود کلسیم‌ به‌ داخل‌ سلول‌ها از غشای‌ سلولی‌ عمل‌ می‌کند ، به‌ همین‌ علت‌ است‌ که‌ این‌ دارو را یک‌ داروی‌ مسدودکننده‌ کانال‌های‌ کلسیمی‌ می‌دانند. این‌ عمل‌ مسدودکنندگی‌ کانال‌های‌ کلسیمی‌ موجب‌ کاهش‌ مقدار کلسیم‌ در سلول‌های‌ قلب‌ و رگ‌های‌ خونی‌ می‌شود، که‌ به‌ کاهش‌ ضربان‌ قلب‌ و گشادشدن‌ رگ‌های‌ خونی‌ منجر می‌گردد. بنابراین‌ فشار خون‌ پایین‌ می‌آید، جریان‌ خون‌ افزایش‌ می‌یابد، و بار کاری‌ قلب‌ کاهش‌ پیدا می‌کند.

چگونگی‌ مصرف


مقادیر متفاوتی‌ از آملودیپین‌ برای‌ علل‌ متفاوتی‌ تجویز می‌شود. مهم‌ است‌ که‌ دارویتان‌ را هر روز سر ساعتی‌ معین‌ مصرف‌ کنید. آملودیپین‌ معمولاً روزی‌ یکبار مصرف‌ می‌شود. معمولاً راحت‌تر است‌ که‌ صبح‌ها پیش‌ از صبحانه‌ مصرف‌ شود تا فراموش‌ نشود. این‌ دارو را می‌توان‌ با یا بدون‌ غذا مصرف‌ کرد. هیچگاه‌ بیشتر از مقدار تجویز شده‌ مصرف‌ نکنید. از دستورات‌ پزشکتان‌ به‌ دقت‌ پیروی‌ کنید. اگر روزی‌ یکبار آملودیپین‌ مصرف‌ می‌کنید و یک‌ نوبت‌ را فراموش‌ کرده‌اید ، به‌ مجردی‌ که‌ آن‌ را به‌ یاد آوردید مصرفش‌ کنید. البته‌ اگر کمتر از 8 ساعت‌ به‌ نوبت‌ بعدی‌ مانده‌ است‌، نوبت‌ فراموش‌ شده‌ را رها کرده‌، به‌ برنامه‌ منظم‌ دارویی‌تان‌ بازگردید. هیچگاه‌ مقدار دارو را دوبرابر نکنید و نیز پیش‌ از مشورت‌ با پزشکتان‌ آن‌ را قطع‌ نکنید. در صورت‌ نیاز به‌ قطع‌ آملودیپین‌، این‌ کار باید به‌ صورت‌ تدریجی‌ صورت‌ گیرد. در اکثر مواردی‌ که‌ آملودیپین‌ به‌ خاطرشان‌ تجویز می‌شود، دارو به‌ مهار بیماری‌ کمک‌ می‌کند نه‌ آنکه‌ آن‌ را درمان‌ کند. این‌ بدان‌ معنا است‌ که‌ حتی‌ اگر احساس‌ بهبودی‌ دارید ممکن‌ است‌ لازم‌ باشد آملودیپین‌ را سال‌ها یا تا پایان‌ زندگی‌ مصرف‌ کنید.

هشدارها و عوارض‌ جانبی‌


در صورت‌ بروز علایم‌ نادر ولی‌ جدی‌ زیر آملودیپین‌ را قطع‌ کرده‌ با پزشکتان‌ تماس‌ بگیرید:

درد قفسه‌ سینه‌ ، مشکل‌ در تنفس‌ ، تنگی‌ نفس‌ یا خس‌خس‌ سینه‌ ، ضربان‌ قلب‌ کمتر از 50 در دقیقه‌ یا فشار خون‌ سیستولی‌ (عدد بزرگتر فشار خون‌) کمتر از 90 میلی‌متر جیوه‌ ، سرگیجه‌ یا سیاهی‌ رفتن‌ چشم‌ هنگام‌ برخاستن‌ از حالت‌ خوابیده‌ یا نشسته‌ ، تورم‌ دست‌ و پا یا افزایش‌ وزن‌ ناگهانی‌ (بیش‌ از 1/5 کیلو گرم‌ در 48-24 ساعت‌) ، التهاب‌ لثه‌ها ، لرزش‌ دست‌ها و انگشتان‌ ، سفتی‌ عضلات‌ دست‌ و پا ، مشکل‌ در صحبت‌ کردن‌ یا بلع‌ ، از دست‌ رفتن‌ تعادل‌ ، بثورات‌ جلدی‌، افسردگی‌ ، تپش‌ قلب‌ (احساس‌ ضربان‌ قلب‌ در سینه‌).

علایم‌ زیر ممکن‌ است‌ تا تنظیم‌ شدن‌ بدنتان‌ به‌ دارو رخ‌ دهند: سردرد ، خواب‌آلودگی‌، خستگی‌، خشکی‌ دهان‌، برافروختگی‌ و احساس‌ گرما، تهوع ‌، یا یبوست‌ یا اسهال‌. اگر این‌ علایم‌ ادامه‌ یافته‌ یا مشکل‌ساز شدند، وضعیت‌ را با پزشکتان‌ در میان‌ بگذارید.

موارد احتیاط

در صورت‌ وجود هریک‌ از موارد زیر پیش‌ از مصرف‌ آملودیپین‌، پزشکتان‌ را مطلع‌ سازید:


توصیه‌ هنگام‌ مصرف


  • به‌طور منظم‌ به‌ پزشکتان‌ مراجعه‌ کنید تا بهبودتان‌ را زیر نظر داشته‌ باشد.
  • در مورد میزان‌ فعالیت‌ قابل‌ قبول‌ بر اساس‌ وضعیت‌ بدنی‌تان‌ با پزشکتان‌ مشورت‌ کنید. * آملودیپین‌ ممکن‌ است‌ با کاستن‌ یا رفع‌ درد قفسه‌ سینه‌ موجب‌ شود تا بیش‌ از اندازه‌ فعالیت‌ کرده‌ و به‌ خود فشار آورید.
  • وزن‌تان‌ را نسبت‌ به‌ قدتان‌ در یک‌ محدوده‌ مناسب‌ نگاه‌ دارید. در صورت‌ نیاز برای‌ کاهش‌ وزن‌ از پزشکتان‌ کمک‌ بگیرید.
  • در صورتی‌ که‌ برای‌ کاهش‌ فشار خون‌ آملودیپین‌ مصرف‌ می‌کنید مصرف‌ سدیم‌ (نمک‌) خود را محدود کنید. از پزشکتان‌ درخواست‌ کنید دستورات‌ تغذیه‌ای‌ در اختیارتان‌ بگذارید یا شما را به‌ یک‌ متخصص‌ تغذیه‌ معرفی‌ کند.
  • اگر سیگاری‌ هستید، سیگار را ترک‌ کنید. از پزشکتان‌ بخواهید تا شما را به‌ یک‌ مشاور یا گروه‌ ترک‌ سیگار معرفی‌ کنند.
  • الکل مصرف‌ نکنید.
  • به‌ آرامی‌ از حالت‌ خوابیده‌ به‌ نشسته‌ یا نشسته‌ به‌ ایستاده‌ تغییر وضعیت‌ دهید تا دچار سرگیجه‌ و سیاهی‌ رفتن‌ چشم‌ یا غش‌ نشوید.
  • بهداشت‌ دهان‌ و دندان‌تان‌ را به‌ خوبی‌ حفظ‌ کنید ، مسواک‌ بزنید، دندان‌هایتان‌ را نخ‌ بکشید و مرتب‌ به‌ دندانپزشک‌ مراجعه‌ کنید تا از مشکلات‌ دندانی‌ و لثه‌ای‌ ناشی‌ از این‌ دارو پیشگیری‌ شود.
  • مقدار کافی‌ دارو برای‌ روزهای‌ تعطیل‌ در دسترس‌ داشته‌ باشید.
  • یک‌ برگه‌ شناسایی‌ پزشکی‌ که‌ نشان‌ دهد آملودیپین‌ مصرف‌ می‌کنید به‌ همراه‌ داشته‌ باشید.
  • پزشکان‌ دیگر را از اینکه‌ آملودیپین‌ مصرف‌ می‌کنید مطلع‌ سازید، چرا که‌ این‌ دارو ممکن‌ است‌ روی‌ برخی‌ آزمون‌های‌ آزمایشگاهی‌ تأثیر بگذارد.
  • آملودیپین‌ را دور از دسترس‌ کودکان‌، و دور از حرارت‌، نور مستقیم‌، و حرارت‌ مرطوب‌ نگاه‌ دارید (در این‌ شرایط‌ آملودیپین‌ فاسد می‌شود).
  • آملودیپین‌ تاریخ‌ گذشته‌ را دور از دسترس‌ کودکان‌ در توالت‌ دور بریزید.

نبایدها

  • نباید تا مشخص‌ شدن‌ پاسخ‌ بدنتان‌ به‌ دارو رانندگی‌ کنید یا با وسایل‌ خطرناک‌ کار کنید. در صورتی‌ که‌ خواب‌آلودگی‌ یا سرگیجه‌ مشکل‌ساز شدند با پزشکتان‌ مشورت‌ کنید.
  • نباید پیش‌ از تأیید پزشکتان‌ داروهایی‌ دیگر به‌ ویژه‌ محرک‌های‌ بدون‌ نیاز به‌ نسخه‌ و داروهای‌ ضدسرفه‌ یا سرماخوردگی‌ را مصرف‌ کنید.

برگرفته شده از :دانشنامه رشد
+ نوشته شده در  شنبه بیست و پنجم اسفند 1386ساعت 1:26  توسط دانشجویان علوم آزمایشگاهی دانشگاه تهران  | 

این مطلب از بخش آموزش وب‌سایت المپیاد زیست‌شناسی رشد،انتخاب شده که با فرمت pdf نیز در وب‌سایت المپیاد رشدموجود می‌باشد. برای مشاهده این موضوعات در وب‌سایت المپیاد، به آدرس فهرست مطالب زیست‌شناسی مراجعه کنید. همچنین می‌توانید با کلیک اینجا‌ ، با ویژگی‌های بخش آموزش این وب‌سایت آشنا شوید.


ترکیب نوکلئوپروتئین

ساختار نوکلئوزوم


هر کروموزوم یوکاریوتی از یک قطعه نسبتاً طویل DNA دو رشته ای تشکیل شده است و متوسط سلول های دیپلوئید دارای تعدادی از این قطعاتDNAمی باشند به منظور اینکه در طی تقسیم میوز و میتوز کروموزوم ها به درستی بین سلول های دختر توزیع شود این قطعات بایستی به صورت ساختارهایی فشرده شوند تا سازماندهی آن ها آسانتر گردد. مکانیسمی که بدین منظور توسط یوکاریوت ها به کار گرفته می شود پیچاندنDNA به دور گوی های پروتئینی است. پیچیده شدن DNA بدور این گوی ها اولین مرحله از سری مراحل فرآیند تا شدن و تاب خوردن DNA است که نهایتاً‌ منجر به تولید کروموزوم های کاملاً فشرده ای می شود که در مرحله متافاز می بینیم. هسته را در مرحله اینترفاز می توان با قرار دادن آن در محلول هیپوتونیک مانند آب جدا کرد. هنگامی که این اتفاق روی می دهد ماده کروماتین بیرون می ریزد. هنگامی که این مواد در زیر میکروسکوپ الکترونی مشاهده می شوند ذرات کوچکی که نوکلئوزوم نامیده می شوند دیده می شوند.
این ها همان گوی هایی هستند که DNA به دور آن ها پیچیده شده است و از پروتئین های هسیتون ساخته شده اند که DNA به آن متصل است.
هسیتون ها گروهی از پروتئین های بازی غنی از ریشه های آرژنین و لیزین هستند که نسبتاً به خوبی شناسایی شده اند. آن ها برای اتصال بهDNA که بار منفی دارد بسیار مناسبند. در ابتدا ژنتیکدانان فکر می کردند که اتصال انتخابی این پروتئین ها بهDNA باید بخشی از مکانیسم کنترل رونویسی باشد ولی اکنون می دانیم که هسیتون بسیار یکنواخت از آن هستند که بتواند به عنوان پروتئین های کنترلی انتخابی عمل کنند.
هنگامی که کروماتین در مجاورت نوکلئاز میکروبی قرار داده شود نوکلئوزوم ها به صورت منفرد قابل جداسازی خواهند بود که نشان می دهد DNA بین نوکلئوزوم ها برای تجزیه در دسترس هستند. اگر تجزیه توسط نوکلئاز ادامه یابد همه DNA حفاظت نشده تجزیه می شود و فقط DNA ای باقی می ماند که بوسیله بر هم کنش با هیستون محافظت شده است. نتایج این مطالعات نشان می دهد که 146 جفت باز از DNA نوکلئوزوم ها به دور هیستون ها پیچیده شده اند و در حدود 75 – 50 جفت باز بسته به نوع گونه نوکلئوزوم ها را به یکدیگر متصل می کند (linker DNA)
شکل 724
img/daneshnameh_up/e/e5/mbio0074a.jpg
هنگامی که میزان هیستون های مختلف اندازه گیری شد در هر نوکلئوزوم از هر یک از انواع هیستون های H4,H3,H2B,H2Aدو مولکول از هسیتون نوع H1تنها یک مولکول موجود بود.
مطالعات بر روی تخریب و تشکیل مجدد هیستون ها نشان داد که هیستون H1 یک جزء ضروری برای تشیکل نوکلئوزوم نیست. در مدلی که اخیراً‌ ارائه شده است هیستون H1 به DNA متصل کننده نوکلئوزوم ها به یکدیگر هنگامی که به نوکلئوزوم وارد یا از آن خارج می شود اتصال پیدا می کند.
شکل 725
img/daneshnameh_up/5/52/mbio0074b.jpg
از آنجا که طولی از DNA که در یک نوکلئوزوم قرار می گیرد کوتاه است و چون سازماندهی هیستون ها بسیار منظم است نوکلئوزوم ها به وضوح سازمان دهنده های عمومی DNA هستند. به بیان دیگر نوکلئوزوم ها اولین مرتبه از بسته های DNA می باشند. آن ها طول DNA را کاهش می دهند و بی شک انقباض و تراکم لازم در طی میوز و میتوز را تاحدود زیادی فراهم می کنند.
هر چند به نظر می رسد که توده های DNA یوکاریوتی بوسیله نوکلئوزوم ها سازماندهی شده است نواحی از DNAوجود دارد نواحی وجود دارد که به نظر می رسد فاقد نوکلئوزوم هستند به این نواحی جایگاه های فوق حساس به نوکلئاز گفته می شود. این جایگاه ها که معمولاً از یک ناحیه نوکلئوزومی با حدود 200 جفت باز تشکیل شده است بویژه در برابر نوکلئاز های مختلف نسبت به تجزیه بسیار حساس هستند. هنگامی که این نواحی جدا سازی می شوند معمولاً توالی هایی دارند که در فرآیندهای رونویسی،‌همانند سازی و سایر فعالیت های DNA اعمالی از خود نشان می دهند. برای مثال تعداد زیادی از نواحی پروموتر در DNA موش و Drosophila و انسان در جایگاه های فوق حساس به نوکلئاز قرار دارند.
لذا برخی توالی های ویژه DNA فاقد نوکلئوزوم نگاه داشته می شدند و به نظر می رسد این نواحی همان نواحی هستند که بوسیله آنزیم های مختلف از قبیلRNA پلی مراز تشخیص داده می شوند اینکه این نواحی چطور تشخیص داده می شوند و خالی از نوکلئوزوم حفظ می شوند در حال حاضر ناشناخته است. هر چند این در حالی است که از تحقیقات اخیر می دانیم همانند سازی DNA از روی نوکلئوزوم ها و بدون جدا شدن هیستون ها از DNA صورت می گیرد.



پیوند های خارجی

http://Olympiad.roshd.ir/biology/content/pdf/0158.pdf
+ نوشته شده در  جمعه سوم اسفند 1386ساعت 23:37  توسط دانشجویان علوم آزمایشگاهی دانشگاه تهران  | 

به روند ساخته شدن مولکول DNA از روی الگوی آن در هسته سلول را همانند سازی ژنتیکی یا همانند سازی DNA گفته می‌شود. که یکی از مراحل تقسیم میتوز است. طی این همانند سازی ، مولکول DNA بدون تغییر به نسل بعد سلولها منتقل می‌شود.

مقدمه

پیشرفتهایی که در سده اخیر نصیب علم ژنتیک شده است، تا حدود زیادی مرهون مطالعه و بررسی وراثت در باکتریها است. امروزه ثابت شده است که مکانیسمها ژنتیکی در باکتریها از نظر واکنشهای شیمیایی مشابه یاخته‌های یوکاریوت است. پروکاریوتها موجودات ساده و مناسبی برای بررسیهای ژنتیکی هستند. زیرا در آنها تنها یک مولکول DNA در هر یاخته وجود دارد و این DNA دارای ساختار کروموزمی پیچیده‌ای نیست. استفاده از میکروارگانیسمها به عنوان ابزار مطالعه ژنتیکی دارای نقاط ضعفی نیز است.

اول آنکه کوچکی اندازه این موجودات بررسی ویژگیهای ظاهری هر یاخته را دشوار می‌سازد. دوم آنکه تولید مثل جنسی در این موجودات وجود ندارد و یا بطور ناقص دیده می‌شود. پس از اینکه ساختار مولکولی DNA که نخستین بار بوسیله واتسون و کریک معرفی و ارائه شد، نحوه بیوسنتز آن را نیز در یاخته مشخص کردند. در اواخر سالهای 1950 ، کریک اصل بنیادی را مطرح کرد. این اصل بیان کننده چگونگی انتقال اطلاعات ژنتیکی از مولکول DNA به RNA و ترجمه آن در پروتئینها است.

img/daneshnameh_up/7/7b/14.png

همانندسازی DNA

در مطالعات اولیه برای همانندسازی سه الگو مطرح شد که شامل الگوهای حفاظتی ، نیمه حفاظتی و پراکنده است. در الگوی حفاظتی از روی مارپیچ دو رشته‌ای DNA ، یک مولکول کامل DNA ساخته می‌شود. در الگوی نیمه حفاظتی ابتدا دو رشته DNA از هم باز شده و در مقابل هر یک از رشته‌ها ، رشته مکمل ساخته می‌شود. در الگوی پراکنده ابتدا مولکول DNA به قطعاتی تقسیم می‌گردد و هر یک از قطعه رشته مکمل خود را سنتز می‌کند. واتسون و کریک با پژوهشهای خود بر روی مولکول DNA ، الگوی نیمه حفاظتی را منطقی و تنها راه همانند سازی می‌دانستند. سپس مزلسون و استال با انجام آزمایشهای بسیار ظریف و مهم ، درستی چنین الگویی را به اثبات رساندند.

آزمایش مزلسون و استال

مزلسون و استال برای اثبات فرآیند همانند سازی آزمایشی انجام دادند که به شرح زیر می‌باشد. آنها ابتدا یاخته‌های باکتری اشرشیاکلی را در محیط کشت ویژه‌ای که نیتروژن آن از نوع سنگین (N15) بود، برای زمان معین کشت دادند و سپس یاخته‌ها را به محیط کشت عادی که نیتروژن آن از نوع سبک (N14) بود، انتقال دادند و در محدوده‌های زمانی معین از یاخته‌های نسلهای اول ، دوم و سوم حاصل از محیط کشت جدید ، نمونه برداری کرده و DNA آنها را به روشهای اختصاصی جدا ساختند. نمونه‌های DNA بر روی گرادیان (شیب) چگالی کلرور منیزیم سانتریفوژ شده و در این روش ترکیبات مختلف بر اساس چگالی آنها جدا سازی می‌شوند.

بدین ترتیب DNA واجد وزنهای متفاوت از یکدیگر جدا می‌شوند. DNA معمولی که N14 دارد (DNA سبک) به علت داشتن چگالی کمتر در بالای لوله قرار می‌گیرد. در حالی که مولکول DNA با (N15 سنگین) در محلی پایین تر از DNA سبک واقع می‌شود. DNA های واجد مقادیر متفاوت N15 و N14 نیز در بینابین این دو حد جای می‌گیرند.

با کشت یاخته‌های دارای DNA واجد نیتروژن سنگین در محیط کشت حاوی نیتروژن سبک مشاهده می‌شود که مولکول DNA ماهیت سبک - سنگین پیدا می‌کند. یعنی دو رشته DNA کاملا از هم باز شده و رشته‌هایی در تکمیل هر یک از دو رشته قبل ساخته می‌شود. این رشته‌های جدید همگی دارای نیتروژن سبک (محیط کشت جدید) هستند. با ادامه کشت در نسلهای دوم و سوم ملاحظه می‌شود که از میزان DNA سبک - سنگین کم شده و به DNA سبک افزوده می‌شود.

نتیجه آزمایش مزلسون و استال

مزلسون و استال با چنین مشاهداتی نتیجه گرفتند که همانند سازی در مولکول DNA به طریق نیمه حفاظتی صورت می‌گیرد که مستلزم باز شدن دو رشته از هم و سنتز مولکول DNA جدید در مقابل هر رشته قدیم است. این پدیده به نام همانند سازی مشهور است.

آنزیمهای لازم در همانند سازی

آنزیمهای پلیمراز

آنزیمهایی هستند که پلیمر شدن زنجیره‌های پلی‌نوکلئوتیدی را کاتالیز می‌کنند. تا کنون سه نوع آنزیم پلیمراز به نامهای Ι و ΙΙ و ΙΙΙ جداسازی و مشخصات آنها ارائه شده‌اند. از بین آنها آنزیم پلیمراز ΙΙΙ نقش اصلی را در سنتز DNA دارد. از خصوصیات مهم آن ، این است که منحصرا نوکلئوتیدها را در جهت '5 به '3 بهم متصل می‌کنند و در جهت عکس نمی‌تواند عمل کند. آنزیم پلیمراز ΙΙ نیز در مرحله‌ای از سنتز DNA وارد شده و سنتز را در جهت '3 به '5 پیش می‌برد. و آنزیم پلیمراز I عمل ترمیم همانند سازی را انجام می‌دهد.

آنزیم هلیکاز

این آنزیم به مولکول DNA دو رشته‌ای متصل شده و با عمل خود موجب باز شدن دو رشته از یکدیگر می‌شود.

آنزیم لیگاز

در مرحله‌ای از سنتز DNA وارد عمل شده و دو رشته DNA را بهم پیوند می‌دهد.

آنزیم پریماز

آنزیمی است که در ساختن قطعه کوچک RNA پرایمر ، هنگام همانند سازی وارد عمل شده و نوکلئوتیدهایی از نوع اسید ریبونوکلئوتید را به یکدیگر متصل می‌کند. تعدادی پروتئینهای ویژه وجود دارند که پس از باز شدن دو رشته DNA از یکدیگر به محلهای باز شده متصل شده و مانع اتصال مجدد دو رشته به یکدیگر می‌شوند.

img/daneshnameh_up/c/cb/Molecules-01.gif

همانند سازی متوالی

در روی مولکول DNA نقاطی وجود دارند که همانند سازی از آنها آغاز می‌شود. این نقاط مبدا همانند سازی خوانده می‌شوند. در DNA باکتریها ، یک مبدا همانند سازی و در DNA موجودات عالی ، تعدادی زیادی از این مبدا وجود دارند. هنگام همانند سازی ابتدا آنزیم هلیکاز به مارپیچ دو رشته‌ای DNA متصل شده و پیچش DNA را در آن نقطه باز می‌کند. پرتئینهای DBP به ناحیه باز شده هجوم آورده و با اتصال به DNA تک رشته‌ای مانع از جفت شدن بعدی DNA می‌شوند.

ناحیه‌ای را که هلیکاز به آن متصل می‌شود، چنگال همانند سازی می‌نامند. همانند سازی به صورت دو سویه است. آنزیم پلیمراز ΙΙΙ که اتصال نوکلئوتیدها را به یکدیگر به عهده دارد، فقط می‌تواند همانند سازی را در جهت 3 به 5 پیش ببرد. در این حالت دو رشته مولکول DNA در خلاف جهت یکدیگر هستند. در نتیحه رشته‌ای که در جهت '5 به '3 سنتز می‌شود، به راحتی سنتز DNA را آغاز کرده و پیش می‌برد. این رشته به نام رشته راهنما معروف است. در همانند سازی این رشته را متوالی می‌نامند.

همانند سازی نامتوالی

در مولکول DNA رشته‌ای که '5 آزاد دارد، سنتز DNA طبق آنچه درباره رشته راهنما ذکر شد، انجام نمی‌گیرد. دلیل آن این است که آنزیم پلیمراز ΙΙΙ نمی‌تواند نوکلئوتیدها را در جهت 3 به 5 کاتالیز کند. لذا می‌بایست مکانیسم دیگری برای سنتز این رشته از DNA وجود داشته باشد. این رشته DNA به نام رشته عمل کننده یا پیرو معروف است. در این حالت ابتدا دو رشته DNA در فواصل معینی از یکدیگر باز شده و آنزیم پریماز در آن محل قرار می‌گیرد و با استفاده از ریبونوکلئوتیدها ، RNA کوچکی ساخته می‌شود که RNA پرایمر نام دارد.

انتهای 3 این RNA کوچک که از روی الگوی DNA ساخته شده است، می‌تواند به آنزیم پلیمراز III امکان دهد تا دزاکسی ریبونوکلئوتیدها را به انتهای آن متصل کند. لذا در این رشته از مولکول DNA قطعاتی از DNA سنتز می‌شوند که قطعات اوکازاکی نام دارد. (اوکازاکی نخستین کسی بود که این قطعات سنتز شده DNA را با میکروسکوپ الکترونی مشاهده کرد).

در این حالت آنزیم پلیمراز I وارد عمل شده و به ترتیب یکی یکی ریبونوکلئوتیدها را در جهت 5 به 3 برداشته و به جای آنها نوکلئوتیدهای از انواع دزاکسی جایگزین می‌کند تا این که قطعات همه از نوع دزاوکسی شوند. سپس انتهای قطعات ساخته شده بوسیله آنزیم لیگاز به هم متصل شده و یک رشته ممتد DNA حاصل می‌شود. اندازه هر قطعه اوکازاکی حدود 1000 تا 2000 نوکلئوتید است.

برگرفته از دانشنامه رشد

+ نوشته شده در  جمعه سوم اسفند 1386ساعت 23:33  توسط دانشجویان علوم آزمایشگاهی دانشگاه تهران  |